
DOI: 10.1007/s10910-004-6895-6
Journal of Mathematical Chemistry Vol. 38, No. 4, November 2005 (© 2005)

Two new regulatory properties arising from the transient
phase kinetics of monocyclic enzyme cascades

R. Varón∗, M. Garcı́a-Moreno, F. Garcı́a-Molina, M.E. Fuentes, E. Arribas,
J.M. Yago, M. Ll. Amo-Saus and E. Valero
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Taking as starting point a previous contribution about the kinetics of the transient
phase and steady-state of monocyclic enzyme cascades, this paper suggest the defini-
tion and use of new regulatory modification properties involving the time elapses from
the onset of the reaction to the attainment of the steady-state for a monocyclic enzyme
cascade. A minimal set of simplifying assumptions allowing to derive analytical expres-
sions for these properties has been used. From these general expressions we derive, as
particular cases, other simpler expressions by using additional assumptions which have,
therefore, a smaller range of validity. A discussion of the relationships between the
kinetic parameters and concentrations needed to the additional assumption is observed
is carried out. The goodness of our analysis has been tested by using numerical integra-
tion of the set of differential equation describing the kinetic behaviour of the cascade.
The results obtained for a type of cascade are extrapolable to other different schemes
of monocyclic enzyme cascades. Finally, a kinetic data analysis and an experimental
design are suggested.

KEY WORDS: Enzyme kinetics, monocyclic cascades, transient phase, steady state,
numerical integration

1. Introduction

Enzyme cascades are ubiquitous in biological systems. They play an impor-
tant role in the regulation of many physiological processes, e.g. regulation of
metabolism, repair of lesions, protection against infectants and evolution, reg-
ulation of neurotransmitter receptor function and the efficiency of synaptic
transmission, or determination of the balance between cell activation and cell
death. Enzyme cascades may be classified into non-cyclic and cyclic ones. The
non-cyclic cascades are irreversible and unidirectional, involving activation of
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zymogens. Cyclic cascades are a common and important type of enzyme cas-
cades which operate by allosterically regulated chemical modification/demodifica-
tion of the active site of key metabolic enzymes. Cyclic cascades may be in turn
classified as monocyclic, bicyclyc and multicyclic cascades. Some examples of
monocyclic cascades are the cascade involved in the modulation of the glycogen
synthase and glycogen phosphorylase activity [1–9].

The steady state kinetics of monocyclic enzyme cascades under rapid equi-
librium conditions have been extensively studied [2, 10–15]. The transient phase
and steady state kinetic behaviour of these cascades both in strict conditions
as well as under rapid equilibrium conditions was reported by Varón and
Havsteen [16]. Nevertheless, these authors did not introduced parameters con-
cerning the time elapsed to reach the steady state and did not test the goodness
of their approached solutions obtained by analytical integration with those aris-
ing from the numerical integration of the corresponding set of differential equa-
tions describing the kinetic behaviour of the monocyclic cascade.

Therefore, the objectives of this communication are as follows:

(1) To define new time-parameters related with this type of cascades analo-
gously as was made by Varón et al. [17] for bicyclic enzyme cascades.

(2) To check the goodness of the kinetic analysis by comparison of the
analytical results with those obtained by numerical integration using
a specific software for enzyme reactions previously developed by
Garcia-Sevilla et al. [18] which allows to simulate the kinetic behaviour
of enzyme systems (e.g. any cyclic cascade) for any set of values of
the rate constants and initial concentrations comparing them with
the simulated progress curves obtained from the system of differential
equations describing the kinetic behaviour of the cascade.

(3) To suggest a kinetic data analysis and experimental design based on the
expressions of new regulatory properties defined here.

(4) To extend the results to different schemes of monocyclic enzyme cas-
cades.

2. Materials and methods

The numerical integration was carried out using the Runge–Kutta–Fehlberg
algorithm [19, 20] using a computer program implemented in Visual C++ 6.0
[18]. The above program was run on a PC-compatible computer based on a Pen-
tium III/450 MHz processor with 128 Mbytes of RAM. Data thus obtained and
the corresponding analytical solutions were plotted using the SigmaPlot Scien-
tific Graphing System for Windows version 8.02.
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3. The model of monocyclic cascade

The model of monocyclic enzyme cascade object of this contribution is the
well known one shown in the following scheme:

Ei + e1              Ea

o-I                               m-I

Ri + e2             Ra

Scheme 1

where Ea(Ra) and Ei (Ri) are the active and inactive forms of the enzyme E(R),
e1 and e2 are the allosteric modifiers of the enzymes E and R and o-I and m-I are
the original and modified forms, respectively, of the interconvertible enzyme I.

The set of reaction steps in Scheme 1 is:

Ei + e1

k1

�
k−1

Ea, (I)

o − I + Ea

k2

�
k−2

o − I.Ea
k3→ Ea + m − I, (II)

Ri + e2

k′
1

�
k′
−1

Ra, (III)

m − I + Ra

k′
2

�
k′
−2

m − I.Ra
k′

3→ Ra + o − I, (IV)

Scheme 2

and the corresponding set of differential equations describing the kinetics of
enzyme species involved in Scheme 2 is given in Appendix A.
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3.1. Assumptions

The set of differential equations in Appendix A is not linear. Hence, it is
very useful to make some reasonable assumptions yielding this system approxi-
mately linear and allowing analytical solutions. We assume, as other authors did
to obtain steady-state equations [2, 16]:

Assumption 1. The reactions between the converter enzymes with their effectors
(steps [I] and [III] in Scheme 2) are in rapid equilibrium.

Assumption 2.

[o − I.Ea] � [Ei], [Ea], (1)

[m − I.Ra] � [Ri], [Ra], (2)

From relations (1) and (2) as well as from Scheme 2, we deduce:

[E] � [Ei] + [Ea], (3)

[R] � [Ri] + [Ra]. (4)

Assumption 3. [e1] and [e2] are maintained at constant levels. This implies that
the allosteric effectors e1 and e2 are present either in excess or continuously are
produced and fed into the system at a rate commensurating with their conver-
sion.

Assumptions 1–3 predict that the concentrations of Ea and Ra remain con-
stant from the onset of the reaction. Their values are given by the following
equations:

[Ea] = [E] [e1]
K1 + [e1]

, (5)

[Ra] = [R] [e2]

K
′
1 + [e2]

, (6)

where K1 and K ′
1 are the dissociation constants of Ea and Ra(j = 1, 2, . . . , N),

respectively, i.e. K1 = k−1/k1 and K ′
1 = k′

−1/k′
1.

Hence, the kinetic study of Scheme 2 is equivalent to that of the following
Scheme 3:
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o − I + Ea

k2

�
k−2

o − I.Ea
k3−→Ea + m − I, (V)

m − I + Ra

k′
2

�
k′
−2

m − I.Ra
k′

3−→Ra + o − I. (VI)

Scheme 3

The set of differential equations corresponding to Scheme 3 is:

d [o − I ]
dt

= −k2 [o − I ] [Ea] + k−2 [o − I.Ea] + k′
3 [m − I.Ra] , (7)

d [o − I.Ea]
dt

= − (k−2 + k3) [o − I.Ea] + k2 [o − I ] [Ea] , (8)

d [m − I.Ra]
dt

= − (
k′
−2 + k′

3

)
[m − I.Ra] + k′

2 [m − I ] [Ra] , (9)

d [m − I ]
dt

= −k′
2 [m − I ] [Ra] + k′

−2 [m − I.Ra] + k3 [o − I.Ea] , (10)

where [Ea] and [Ra] are the constants given by equations (5) and (6) and, there-
fore, the set of differential equation (7)–(10) is linear.

Assumption 4. Bindings of the converter enzymes to the convertible ones are in
rapid equilibrium from the onset of the reaction.

Rapid equilibrium assumptions in Scheme 3 requires that the first or
pseudofirst-order rate constants involved in the reversible steps are much higher
than the other ones and not very different [16, 21] i.e.:

k2 [Ea] , k−2, k
′
2 [Ra] , k′

−2 � k3, k
′
3,

k2 [Ea] , k−2, k
′
2 [Ra] , k′

−2 mutually not very different. (11)

4. Regulatory properties involving reaction time

To define new regulatory properties related with time elapsed to reach the
steady state we start with the results for the time course of the fractional mod-
ification, FM, when rapid equilibrium in reversible steps in Scheme 3 prevails,
previously reported by Varón and Havsteen [16]. The instantaneous fractional
modification is defined as the quotient [m − I ]/[I ] and is given by:

FM = (FM)∞(1 − eλt ), (12)



442 R. Varón et al. / Two new regulatory properties from the transient phase kinetics

where (FM)∞, the fractional modification at the steady state, i.e. when t → ∞
and λ are:

(FM)∞ = k3K
′
2 [Ea]

k3K
′
2 [Ea] + k′

3K2 [Ra] + (k3 + k′
3) [Ea] [Ra]

, (13)

λ = −k3K
′
2 [Ea] + k′

3K2 [Ra] + (k3 + k′
3) [Ea] [Ra]

K ′
2 [Ea] + K2 [Ra] + K2K

′
2 + [Ea] [Ra]

, (14)

where K2 and K ′
2 are the dissociation constants of o−I.Ea and m−I.Ra, respec-

tively, i.e. K2 = k−2/k2 and K ′
2 = k′

−2/k′
2.

Equation (12) allows an estimation of the time required by the system to
reach the steady state. This is an important parameter because a cascade of high
steady-state sensitivity but possessing a long transient time may, in real time,
behave as a low sensitivity system. Conversely, a cascade of a moderate steady-
state sensitivity could, in real time, display a considerable sensitivity, if it has a
short transient phase. In the following we define the parameter transient time, T,
of the interconvertible protein I of a monocyclic enzyme cascade system as the
time reaction at which it is observed that:

(FM)T = 0.9999(FM)∞. (15)

If in equation (12) with t = T , equation (15) is taken into account we have,
whenever that (FM)∞ �= 0 that:

T = −4 ln 10
λ

, (16)

where λ is given by equation (14). If (FM)∞ = 0 then T is not defined. If equa-
tion (14) is inserted into equation (16), we have:

T = 4
(
K ′

2 [Ea] + K2 [Ra] + K2K
′
2 + [Ea] [Ra]

)
ln 10

k3K
′
2 [Ea] + k′

3K2 [Ra] + (k3 + k′
3) [Ea] [Ra]

. (17)

Nevertheless, neither the knowledge of the (FM)∞-value nor that of the
transient time, T , is sufficient to define the efficiency of a monocyclic cascade.
Therefore, we define the mean regulation rate of any of these cascades as:

M = (FM)∞
T

. (18)

If now equations (13) and (17) are inserted into equation (18), the result is:

M = k3K
′
2 [Ea]

4
(
K ′

2 [Ea] + K2 [Ra] + K2K
′
2 + [Ea] [Ra]

)
ln 10

. (19)
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5. Results and discussion

The starting point of this contribution is equation (12), which gives the time
course of the fractional modification of monocyclic enzyme cascades evolving
according to Scheme 1. From this equation we have defined in this work two
new parameters related with the efficiency of these cascades: the transient time,
T (equation (17)) and the mean regulation rate, M (equation (19)).

From FM equal to 0.9999(FM)∞ one can say that the system is practically
at the steady state. The chose of 99.99 is arbitrary and any other percentage near
100 (except obviously 100 because in this case the transient time will be infinity)
could be also chosen. The time that the system remains in the transient phase or,
the same, the time required by the system to reach the steady state is the prac-
tical meaning of T . From this definition, M means the mean rate of increase of
the fractional modification, FM. It is to be observed that M gives a more com-
plete information than (FM)∞ alone or T alone.

In practice, T and M could easily be obtained from a fit of the experimental
FM-values to equation (12), which allows to determine the parameters λ and
(FM)∞. Hence, equation (16) gives the T -value and then, equation (18) furnishes
the M-value.

5.1. Dependence of T and M on [Ea] and [Ra]

Equations (17) and (19) show the dependence of T and M on [Ea] and [Ra]
simultaneously. In the following we will use the notations T[Ra] and M[Ra] to indi-
cate the function which gives the dependencies of T and M, respectively, on [Ea]
at a fixed [Ra]-value. Likewise, we will use the notations T[Ea] and M[Ea] to indi-
cate the function which gives the dependencies of T and M, respectively, on [Ra]
at a fixed [Ea]-value.

According to equations (17) and (19), we have:

lim
[Ea]→0

T[Ra] = 4
(
K ′

2 + [Ra]
)

ln 10

k′
3 [Ra]

, (20)

lim
[Ea]→∞

T[Ra] = 4
(
K ′

2 + [Ra]
)

ln 10
(
k3 + k′

3

)
[Ra] + k3K

′
2

, (21)

lim
[Ra]→0

T[Ea] = 4 (K2 + [Ea]) ln 10
k3 [Ea]

, (22)

lim
[Ra]→∞

T[Ra] = 4
(
K ′

2 + [Ra]
)

ln 10
(
k3 + k′

3

)
[Ra] + k′

3K2
, (23)

lim
[Ea]→0

M[Ra] = 0, (24)



444 R. Varón et al. / Two new regulatory properties from the transient phase kinetics

lim
[Ea]→∞

M[Ra] = k3K
′
2

4
(
K ′

2 + [Ra]
)

ln 10
, (25)

lim
[Ra]→0

M[Ea] = k3 [Ea]
4 ([Ea] + K2) ln 10

, (26)

lim
[Ra]→∞

M[Ea] = 0 (27)

For greater ease, in the following we will denote the limits lim[Ea]→0 T[Ra],
lim[Ea]→∞ T[Ra], lim[Ra]→0 T[Ea], lim[Ra]→∞ T[Ea], lim[Ea]→0 M[Ra], lim[Ea]→∞ M[Ra],
lim[Ra]→0 M[Ea], and lim[Ra]→∞ M[Ea] as T 0

[Ra], T ∞
[Ra], T 0

[Ea], T ∞
[Ea], M0

[Ra], M∞
[Ra], M0

[Ea]
and M∞

[Ea], respectively.
In Figure 1 we have plotted the functions T[Ra] and T[Ea] for an arbitrary set

of values of [Ra] and [Ea] and the equilibrium and rate constants involved. We
have also plotted in figure 2 the functions M[Ra] and M[Ea] for the same arbitrary
set of values of [Ra] and [Ea] and the equilibrium and rate constants used in fig-
ure 1. Note that T decreases when [Ea] at a fixed [Ra]-value or [Ra] at a fixed
[Ea]-value increase.

5.2. Check of the goodness of our results

A test of these results by means of simulated progress curves is necessary to
know the goodness of our approach and definitions. Equation (12) was obtained
from the set of differential equations (7)–(10) under Assumptions 1–4. Thus,
equation (12) is approximately valid under these assumptions. In figure 3 we
indicate the time progress course of FM (i.e., the quotient [m − I ]/[I ]) obtained
from equation (12) and from numerical integration of the set of differential
Equations (7)–(10), assuming the constancy of [Ea] and [Ra] for the four arbi-
trary sets of values of [I ], [Ea] and [Ra] and the rate constants indicated in
table 1 as cases 1–4. Likewise, equations (17) and (19) obtained from equation
(12) have the same approached character as the latter. Table 2 gives the values of
(FM)∞, T and M obtained from equations (13), (17) and (19), and from simu-
lated progress curves in figure 3.

Discrepancies in figure 3 and table 2 between our results and those obtained
from simulation (as in case 4) indicate that Assumption 4 is not observed for the
chosen values as can be easily shown from the not fulfilment of relationship (11)
for this case.

5.3. Kinetic data analysis

Experimental values of any of the parameters T 0
[Ra], T

∞
[Ra] (obtained from a

plot of T[Ra] versus [Ea]) T 0
[Ea], T ∞

[Ea] (obtained from a plot of T[Ea] versus [Ra]),
M∞

[Ra] (obtained from a plot of M[Ra] versus. [Ea] and M0
[Ea] (obtained from a
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[Ra]   

[Ea]   

Figure 1. (a) Dependence of T[Ra] on [Ea] at different fixed [Ra]-values according to equation (17).
Values of [Ra] used in curves A–C where 1, 5 and 10 µM, respectively. (b) Dependence of T[Ea]

on [Ra] at different [Ea] values according to equation (17). Values of [Ea] used in curves A–C,
where 1, 5 and 10 µM, respectively. Values of the equilibrium and rate constants where in all cases:

K2 = K ′
2 = 10−5 M, k3 = 5 s−1, k′

3 = 10 s−1.

plot of M[Ea] versus [Ra]), and their corresponding expressions given by equa-
tions (20)–(23), (25) and (26) may be used to estimate the parameters involved.
For example, from equation (26) we have that a plot of 1/(4M0

[Ea] ln 10) versus
1/[Ea] is a straight line with the slope K2/k3, and the intercept ordinate 1/k3 so
that k3 and K2 are immediately obtained.
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Figure 2. (a) Dependence of M[Ra] on [Ea] at different fixed [Ra]-values according to equation (19).
Values of [Ra] used in curves A–C, where 1, 5 and 10 µM, respectively. (b) Dependence of M[Ea] on
[Ra] at different [Ea] values according to equation (19). Values of [Ea] used in curves A–C, where
1, 5 and 10 µM, respectively. Values of the equilibrium and rate constants used where as figure 1.

Table 1
Values for the rate constants, [Ea], [Ra] and [I ] used for numerical integration of the set of differ-
ential equations giving the simulated time progress of FM. These values were also used for plots
of equation (12) in the four different cases 1–4. On the two last columns, K2− and K ′

2− values for
plotting equation (13) in each case are also given.

[I] [Ea] [Ra] k2 k−2 k′
2 k′

−2 k3 k′
3 K2 K ′

2
Case (µM) (µM) (µM) (µM−1 s−1) (s−1) (µM−1 s−1) (s−1) (s−1) (s−1) (µM) (µM)

1 1 10 5 10 100 20 200 10 5 10 10
2 1 10 5 10 100 20 200 1 2 10 10
3 1 0.01 0.05 100 100 400 800 1 2 1 2
4 1 0.01 0.02 100 100 400 800 100 200 1 2
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case 1 case 2

case 4case 3

Figure 3. Time course equation of FM (i.e. the quotient [m − I ]/[I ]) obtained from simulation
(——) and plotting equation (12) corresponding to each case (cases 1–4 in table 1) (. . . ). Both
curves practically overlap in cases 1–3 where Assumption 4 is observed, but not in case 4 where

Assumption 4 is not observed (see table 4).

Table 2
Values obtained from the simulated progress curves and from equations (13), (17) and (19) for cases

1–4 in table 1.

(FM)∞ (FM)∞ T (s) T (s) M (s−1) M (s−1)

Case (simulation) (equation (13)) (simulation) (equation (17)) (simulation) (equation (19))

1 0.5000 0.5000 1.3960 1.3816 0.3582 0.3619
2 0.2869 0.2857 7.2613 7.8946 0.0395 0.0362
3 0.1636 0.1646 157.20 156.20 0.0001 0.0001
4 0.2367 0.3300 3.7066 3.1008 0.0638 0.1064

5.4. Dependence of T and M on the concentrations of the converter enzymes E
and R and of the allosteric effectors e1 and e2

Once shown the validity of our results we will give the dependence of T and
M upon the converter enzymes E and R and upon the effectors e1 and e2. If in
equations (17) and (19) we insert equations (5) and (6), we have the dependen-
cies required.

5.4.1. Monocyclic cascades particular cases Scheme 1
Figure 4 summarises four different schemes of monocyclic cascades which

differ in the nature of the interactions between the allosteric effectors and the
converter enzymes. For completeness we have also included Scheme 1 in figure 4.
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Table 3
Expressions of [Ea] and [Ra] to be inserted into equations (13), (17) and (19) for Schemes 1 and 4–6.
In all cases K1 and K ′

1 are dissociation equilibrium constants, i.e.: K1 = k−1/k1 and K ′
1 = k′

−1/k1.

Expressions of Expressions of
Scheme Steps in which the converter enzymes are involved [Ea] [Ra]

1 Ei + e1

k1

�
k−1

Ea and Ri + e2

k′
1

�
k′
−1

Ra
[E][e1]

K1+[e1]
[R][e2]

K ′
1+[e2]

2 Ei + e1

k1

�
k−1

Ea and Ra + e2

k′
1

�
k′
−1

Ri
[E][e1]

K1+[e1]
K ′

1[R]
K ′

1+[e2]

3 Ea + e1

k1

�
k−1

Ei and Ri + e2

k′
1

�
k′
−1

Ra
K1[E]

K1+[e1]
[R][e2]

K ′
1+[e2]

4 Ea + e1

k1

�
k−1

Ei and Ra + e2

k′
1

�
k′
−1

Ri
K1[E]

K1+[e1]
K ′

1[R]
K ′

1+[e2]

Note that in Schemes 1 and 4 the allosteric effector e1 acts as an activator, whereas
in Schemes 5 and 6 acts as an inhibitor. In Schemes 1 and 5 the allosteric effector
e2 acts as an activator, whereas in Schemes 4 and 6 acts as an inhibitor.

All results here obtained have been referred to Scheme 1. However equations
(1)–(4) and (7)–(27) can also be directly applied to Schemes 4-6. Nevertheless, if

Ei + e1       EaEi + e1       Ea

o-I m-Io-I m-I

        Ri  Ra + e2 Ri + e2      Ra

Scheme 1 

Ei       Ea + e1   

o-I m-I

Scheme 4 

Ei       Ea + e1    

o-I m-I

Ri + e2      Ra Ri       Ra + e2    

Scheme 6 Scheme 5 

Figure 4. Simplified reactions patterns for different schemes to which equation (17) and (19) can be
directly applied.
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we want any of these equations, e.g. those for the transient time or the mean reg-
ulation rate as a function of the concentrations of the target converter enzymes
and allosteric effectors, [Ea] and [Ra] in equations (5) and (6) must be replaced
by the corresponding expressions (table 3). For the sake of completeness we also
include Scheme 1 in table 3.

Appendix A

System of differential equations describing the evolution of the species involved in
Scheme 2

d [Ei]
dt

= −k1 [Ei] [e1] + k−1 [Ea] , (A1)

d [e1]
dt

= −k1 [Ei] [e1] + k−1 [Ea] , (A2)

d [Ea]
dt

= − (k−1 + k2 [o − I ] ) [Ea] + k1 [Ei] [e1] + (k−2 + k3) [o − I.Ea] , (A3)

d [o − I ]
dt

= −k2 [o − I ] [Ea] + k−2 [o − I.Ea] + k′
3 [m − I.Ra] , (A4)

d [o − I.Ea]
dt

= − (k−2 + k3) [o − I.Ea] + k2 [o − I ] [Ea] , (A5)

d [m − I ]
dt

= −k′
2 [m − I ] [Ra] + k′

−2 [m − I.Ra] + k3 [o − I.Ea] , (A6)

d [Ri]
dt

= −k′
1 [Ri] [e2] + k′

−1 [Ra] , (A7)

d [e2]
dt

= −k′
1 [Ri] [e2] + k′

−1 [Ra] , (A8)

d [Ra]
dt

= − (
k′
−1 + k′

2 [m − I ]
)

[Ra] + k′
1 [Ri] [e2] + (

k′
−2 + k′

3

)
[m − I.Ra] , (A9)

d [m − I.Ra]
dt

= − (
k′
−2 + k′

3

)
[m − I.Ra] + k′

2 [m − I ] [Ra] . (A10)
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